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Free particle chaotic scattering off two oscillating disks
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We investigate the two-dimensional classical dynamics of the scattering of point particles by two periodi-
cally oscillating disks. The dynamics exhibits regular and chaotic scattering properties, as a function of the
initial conditions and parameter values of the system. The energy is not conserved, since the particles can gain
and lose energy from the collisions with the disks. We find that for incident particles whose velocity is on the
order of the oscillating disk velocity, the energy of the exiting particles displays nonmonotonic gaps of allowed
energies, and the distribution of exiting particle velocities shows significant fluctuations in the low energy
regime. We also considered the case when the initial velocity distribution is Gaussian, and found that for high
energies the exit velocity distribution is Gaussian with the same mean and variance. When the initial particle
velocities are in the irregular regime the exit velocity distribution is Gaussian, but with a smaller mean and
variance. The latter result can be understood as an example of stochastic cooling. In the intermediate regime
the exit velocity distribution differs significantly from Gaussian. A comparison of the results presented in this
paper to previous chaotic static scattering problems is also discussed.@S1063-651X~98!14408-2#

PACS number~s!: 05.45.1b, 95.10.2a
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I. INTRODUCTION

The study of nonlinear systems capable of exhibiting c
otic behavior has been an intensive area of research in
last 15 years. This research was initiated about a century
by the work of Henri Poincare´, who studied the motion o
three gravitationally interacting bodies. Most of the wo
done on this subject has focused on bounded systems. O
other hand, many experimental techniques involve scatte
processes. In contrast to bounded systems, where the p
cle’s trajectories remain forever inside the range of inter
tion, in a scattering process an incoming particle ‘‘feels’’ t
interaction potential only for a finite amount of time an
eventually exits the interaction region@1–11#. In the general
description of a scattering process, we have an input tra
tory into a region of nontrivial dynamics called the scatteri
region, and an output trajectory away from this region. W
can think of the scattering process as a map that transfo
an incoming trajectory into an outgoing one. Only relative
recently has it been realized that a scattering processes
a general scattering potential, often without a simple geom
ric symmetry, can have rather complicated dependencies
tween the incoming and outgoing trajectories. This me
that, by very slightly changing the initial conditions that d
fine the incoming trajectory, the outgoing trajectory w
have rather large fluctuations. The idea thatchaotic scatter-
ing can play an important role in various problems in phys
became widely accepted after the seminal work of Petit
Hénon @4# ~see also Ref.@1#!.

Most previous chaotic scattering studies have assum
stationary scattering region, i.e., fixed in time~for an excep-
tion, see Ref.@12#!. In this paper we present results from

*Permanent address.
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dynamical study of the scattering of particles from a tim
dependent oscillatory interaction potential, which consists
two circular disks that oscillate periodically in time. Th
static two-disk problem was recently shown to be analy
cally integrable@11#, ~hereafter we call this work I!. In this
paper we build our nonequilibrium dynamical study bas
upon the results obtained in I.

Our model can conceivably be produced in very low te
perature experiments, where a pair of circular quantum d
is generated by a gate voltage that can vary their radius
riodically in time. Ballistic transport experiments in meso
copic systems have raised the possibility of directly study
chaotic billiards, where the addition of external fields c
yield results that are expected to account for certain asp
of unusual related experimental results@13–20#. Some of the
transport results seen in experiments are surmised to h
classical related explanations@21–26#. The geometry of mi-
crojunctions @13# and antidot-lattices@14,15# can be de-
scribed by models that consist of circular scattering dis
For the above reasons, in this paper we will focus on
scattering of a particle from two oscillating classical har
disk billiards. Here we concentrate on the classical dynam
of this model, and leave the very interesting quantum c
for a future study.

The outline of the paper is the following: In Sec. II, w
introduce the model considered in this paper, together w
its main physical properties. In Sec. III, we derive a scatt
ing map associated with our problem. In Sec. IV, we pres
and discuss the bulk of our results. Finally, in Sec. V,
provide a short summary of the results and the perspect
for the future.

II. DEFINITION OF THE PROBLEM

We consider the motion of a unit mass particle restric
to moving on the plane. The particle elastically collides w
1780 © 1998 The American Physical Society
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PRE 58 1781FREE PARTICLE CHAOTIC SCATTERING OFF TWO . . .
two hard disks that oscillate periodically in time. The initi
velocity of the particle changes as a function of time due
the energy exchange after each collision with the disks.
we discuss below, depending on the initial conditions
particle will spend a certain amount ofdwell time in the
interaction region, after which time it will exit upwards o
downwards. It is the complexity of this motion that we w
carefully describe below.

Here we will follow the approach presented in I@11#,
including its notation. The reader should check this refere
for further details on the formulation of the static problem.
Fig. 1, we show the two disks on the plane. The radii of b
disks are normalized to 1. Their centers are separated
time-dependent distanceR(t).2. One convenient way to
study this problem, as pointed out in I, is by replacing t
system by one disk and one rigid wall placed at the symm
try axis of the two-disk problem. This is the representation
the model we study in this paper.

Two-disk oscillating model

The model we consider here is in some sense the sca
ing two-dimensional extension of the well studiedbound
Fermi accelerationmodel @27,28#. This model is defined by
a free particle inside a rigid one-dimensional box, with o
wall fixed and the other one periodically oscillating in tim
The Fermi model was one of the first two degrees of freed
problems studied, which exhibited a transition from regu
to chaotic behavior as a function of the oscillating wall m
tion. For a linear saw-tooth time-dependent wall oscillatio
the particle dynamics is regular. Having a linear time dep
dence implies a constant oscillating wall velocity. When t
oscillation is nonlinear in time, there is acceleration in t
wall motion, and one can then have nontrivial dynami
with a transition between regular to fully chaotic behavior.
this paper, without loss of generality, we consider the s
plest nonlinear piecewise quadratic time-dependent disk
cillation shown in Fig.~2!. In this case we represent th
motion of the disk center by

X~ t !5Ãt21B̃t1C̃. ~1!

FIG. 1. This figure defines the two-disk periodically oscillatin
model studied in this paper. The model is replaced and studie
the one oscillating disk and a fixed wall. The figure shows a do
line disk with a center atXn5X(tn), and a continuous line circle a
the right of the wall with center atXn115X(tn11). The disk on the
left of the wall represents the image of the dotted line disk. Va
ables with a subindexn are evaluated at timetn .
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Here the constantsÃ, B̃, and C̃ are fixed for a half period,
and they have different values for different half periods. T
motion of the disk center~the other disk is the mirror image
of this one! is given by Eq.~1!, the modulus the oscillation
disk periodT.

In our analysis, for calculational convenience, we chose
treat the problem in the following way. We label by th
integerm each continuous piece of the disk oscillation. T
time t andm are then related by the expression

m5F F2~ t1F0 /v!

T G G , ~2!

where@@ ## denotes the nearest lower integer. Them param-
eter will have a fixed value for timet in the time interval
(m/2)T<t<@(m11)/2#T. Herev52p/T is the oscillation
frequency, andF0 is the initial oscillation phase. The spe
cific expressions that define the parametersÃ, B̃, andC̃ are
given in the Appendix.

We have now defined the time dependence of the os
lating disk. Next we use the relevant results given in I, not
that the incidence-reflect symmetry in our case is changed
the oscillation of the disk.

1. Collision Time

We start by calculating the time elapsed between two s
cessive collisions of the particle with the disk. We need t
time to calculate the new velocity vector, by means o
velocity transformation to the system where the disk is
rest. We deduce from Fig. 1 that the position of the collidi
particle is given by

rW ~ tn11!5rW n115rW nv1vW nv~ t2tn!, ~3!

where tn is the previous collision time, and the subindexv
denotes aspecular variable. To clarify the meaning of
specular, consider for example, the one associated w
rW n(t)5(xn ,yn), which gives

rW nv5~xnv ,ynv!5~2xn ,yn!5~2Xn1cosun ,sin un!,
~4!

and the velocity

by
d

-

FIG. 2. HereX(t) denotes the oscillating wall model about th
equilibrium positionXe in the range@Xe2A,Xe1A#, with ampli-
tudeA. The parameterm labels the oscillation segment with fixe
value in the time interval„(m/2) T, @(m11)/2# T…. The relation be-
tween timet and m is given in Eq.~2!. The figure is drawn for
F050.
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1782 PRE 58A. ANTILLÓ N, JORGE V. JOSE´ , AND T. H. SELIGMAN
vW nv5~vnvx ,vnvy!5~2vnx ,vny!

5@vncos~un2fn!,vnsin~un2fn!#. ~5!

The new collision pointrW n115(xn11 ,yn11), at the new col-
lision time tn11, must lie on the circumference given by th
equation

@xn112X~ tn11!#21yn11
2 51. ~6!

Evaluating Eq.~1! at t5tn11, and substituting it in Eq.~6!,
we obtain the quartic equation fortn11,

a4tn11
4 1a3tn11

3 1a2tn11
2 1a1tn111a050, ~7!

where the expression for the parametersa0, a1, a2, a3 and
a4, are explicitly given in Eq.~A2!.

We can obtaintn11 as a function oftn using Eq.~7! and
Eq. ~A2!. Once we knowtn11, the collision point on the disk
can be determined from Eq.~3! as

xn1152xn2vnx~ tn112tn!,yn115yn1vny~ tn112tn!,
~8!

and then, using Eq.~6!, the disk will be located at

Xn115xn111A12yn11
2 ~9!

2. Disk velocity map

To calculate the velocity of the disk,VW n11 at the new
collision time, we take the time derivative of Eq.~1! that
gives

VW ~ t !5„Ẋ~ t !,0…5~2Ãt1B̃,0!, ~10!

and consequently

VW n115VW ~ tn11!5~2Ãtn111B̃,0!,[~Vn11,0! ~11!

which is fully determined sincetn11 is known from Eq.~7!.
To determine the velocity of the particle,vW n11, we introduce
the relative particle velocity~see Fig. 3! with respect to the
disk as

uW 5vW 2VW . ~12!

FIG. 3. This figure is used in the derivation of the velociti
map. The relative velocities before and after the collision have
same angle with respect to the normal to the disk, but the velo
itself has two different angles. See text for the definition of t
variables in this figure.
Then

uW nv` r̂ n115Pk̂, ~13!

where

P5@~Xn112xn11!uny2yn11unx#, ~14!

and

unx5vnx1Vn11 , uny5vny , ~15!

with the normal unit vectork̂i ẑ, as seen in the figure. On
can also show that

uW n11` r̂ n115@un11xyn112un11y~xn112Xn11!# k̂.
~16!

From these two equations, we obtain

un11y5 P̄2Qun11x , ~17!

with

P̄5
P

Xn112xn11
and Q5

yn11

Xn112xn11
. ~18!

We also have the conservation of the velocity magnitu
which in the coordinate frame where the disk is at rest
given by

un11x
2 1un11y

2 5un
2 . ~19!

Using Eq.~15! in the last equation we obtain

un11x5
P̄Q2AP̄2Q22~11Q2!~ P̄22un

2!

11Q2
, ~20!

with an appropriately chosen minus sign in the square ro
We now go back to Eq.~15! to find un11y . This allows us to
obtain the velocity of the particle after the collision throug
the expressions

vn11x5un11x1Vn11 and vn11y5un11y . ~21!

III. SCATTERING MAP

Following the notation of I, we can obtain the scatteri
map associated with this dynamical system. Since the d
vation of our map is completely analogous to the one giv
there, we can directly write down the final expressions s
ing a few differences proper to our problem. The map d
rived in I is

fn115sin21F vn

vn11
@sin fn1R̄ sin~un2fn!#G , ~22!

un115sin21@sin un1l sin~un2fn!#. ~23!

In our caseR̄5Xn1Xn11, and

l5R̄ cos~un2fn!2cosfn

2A@cosfn2R̄ cos~un2fn!#22R̄212R̄ cosun. ~24!

e
ty
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FIG. 4. Phase space results for a limit close to the Fermi acceleration one-dimensional model. Herevx is thex component of the particle
velocity, normalized by the disk velocityVmax. The particle will eventually sense the disk two-dimensional curvature, and the reso
structures, as compared to the Fermi model, will change. The plot has 74 238 points obtained from 17 particles with differe
velocities.
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The initial conditions (u0 ,f0) in this map are obtained from
the parameters set at timet50. If we take the initial particle
position as (x0̄ ,y0̄), the anglea between the initial velocity

vW 0̄ and the horizontal gives

f05sin21Fv 0̄

v0
@~X02x0̄!sin a1y0̄cosa#G , ~25!

u05sin21~y0̄1l 0̄sin a!. ~26!

In Eq. ~25!, vW 0 is given byvW 05uW 01VW 0, anduW 0 by

u0x5
R̄S2AR̄2S22~11S2!~R̄22u0̄

2
!

11S2
, ~27!

u0y5R̄2Su0x , ~28!

where

R̄5
R

X02x0
and S5

y0

X02x0
, ~29!

R5~X02x0!u0̄y1y0u0̄xu0̄x5v 0̄x2V0 and u0̄y5v 0̄y .
~30!

The results derived in this section used a polar coordin
representation that has several advantages for the geom
analysis described here. When iterating the map numeric
however, the polar coordinate representation is somew
cumbersome, and for that reason we found it more con
nient to carry out the iterations in Cartesian coordinates. T
is what we did to obtain the results described in Sec. IV.
es
tric
ly,
at
e-
is

IV. RESULTS

In this section we discuss the bulk of our numerical
sults. We provide typical results for a regime of interesti
physical parameters. To check our analysis, we looked at
Fermi acceleration limit of our problem, which correspon
to having the two disks quite close to each other and with
particle initial conditions along the disks axis, so that t
particle does not ‘‘notice’’ the disks curvature. We repr
duced the Fermi accelerator model results by choosing
parameters for the equilibrium position of the disk cent
Xe , the amplitude of oscillation,A, the time oscillation pe-
riod T, and the free space distance between the wall and
disk, close to the values given in Refs.@27,28#. The phase
space plots obtained correspond well to the known Fe
accelerator results, i.e., chaotic behavior for low velociti
and several sets of resonant islands for higher velocities

After this test we chose a separation between the wall
disk large enough so that the particle dynamics sensed
curvature of the disks. Of course, if the separation distanc
too large, the particle will hardly collide with the disk an
the dynamics becomes trivial. The interesting parame
ranges are the ones which allow a large number of part
collisions with the oscillating disk and the wall. A typica
phase space plot is shown in Fig. 4, for several particle ini
conditions. The parameters considered satisfy the neces
condition to have a large number of particle collisions w
the oscillating disk. In the units where the radius of the d
is 1, we took the parameters: (Xe,0)5(1.000 097,0),A
51.631026, T57.631025, F050, and the acceleration
parameterÃ54716.085. We considered a set of 2000 p
ticle initial conditions, which we may as well call a beam
2000 particles, each one sent from the origin into the sc
tering region with an anglea5631022 radians with respec
to the x axis. We varied the velocities of the particles b
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1784 PRE 58A. ANTILLÓ N, JORGE V. JOSE´ , AND T. H. SELIGMAN
tween 0.1 and 5.0, chosen from a uniform random distri
tion.

In Fig. 5 we show the delay, ordwell time, td , as a
function of the initial energy~velocity! of the incident par-
ticles. For low energies we observe a very irregular beha
in td . In fact, this behavior is rather close to a fractal, as c
be seen by zooming in a given interval of energies, as sh
in the left inset. We also note that for initial velocities larg
that 5.5, there is a mixture of regular and irregular zon
When we amplify one of the irregular regions, we can ag
see the fractal character of the results~see the inset on the
right!. For larger energies than the ones shown here,
found that td tends to a constant value. This is what w

FIG. 5. Dwell timetd as a function of the normalized inciden
velocity v in . In inset ~a! we show amplified results aboutv in

52.375. We see that the low energy particles have an irreg
behavior with a fractal-like character. Velocities higher than
have a mixture of regular and irregular behaviors. In inset~b! we
show a further amplification around velocities close to 7.581. E
picture is drawn from results of 2000 initial conditions.

FIG. 6. Dwell time histogramN(td /T) for data like the one
shown in Fig. 5, except that here we used 6000 particles instea
the 2000 used in Fig. 5. The two noticeable peaks are due to
contributions from the irregular and semiregular zones, which c
respond to the data shown in insets~a! and ~b!, respectively. The
number of particles used to obtain the histograms was 2000.
bin size in the three histograms is around 3% of the full range
each plot.
-

r
n
n

s.
n

e

would expect for large energies since the particle essent
sees the disk as stationary.

It is interesting to use the data of Fig. 5 to construct t
histogram of dwell times shown in Fig. 6. The main hist
gram has two representative contributions. One comes f
the irregular zone and the other one from the semireg
component, as shown in the two insets in the figure. T
upper inset corresponds to the irregular region, and the lo
one to the semiregular zone. The main histogram shows
peak close to atd of about 100 and the other one close
200, which correspond to the peaks seen in the insets.
bin size used in all the histograms shown are around 3%
the full range. In Fig. 7 we show the number of collisio
with the disk versus the incoming velocity. The general b

ar

h

of
he
r-
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n

FIG. 7. Here we show the dependence betweenN andv in /Vmax.
The main plot and the inset show the same general behavior as
of Fig. 5, with the irregular behavior in the same range of inp
velocities. For large velocities,N is basically constant. This mean
that the disk motion has little effect on the particle velocities. Ea
picture was done with 2000 particles.

FIG. 8. Here we show a plot oftd vs N. We note that there is no
clear relationship between these two variables. The general be
ior of both plots are similar to the ones shown in Figs. 5 and 7. N
that for lowv in ~irregular region!, their dependence is irregular. Th
number of points taken was 2000. We see that when the in
velocity is outside the irregular region, all the particles are conc
trated in a black zone in the figure. This means the near indep
dence oftd andN with respect to the input velocity.
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PRE 58 1785FREE PARTICLE CHAOTIC SCATTERING OFF TWO . . .
havior is very similar to that in Fig. 5, however, the explic
relationship is complicated. This can also be seen from
8, which we shall discuss in the next paragraph. In Fig. 7
note, in particular, the irregular behavior in the same regi
of incident velocities. As we increase the initial energy, t
number of collisions reach a plateau, which is because
disk appears to be at rest. In the inset we used the s
number of particles as used in the main figure, but the ra
of velocities is smaller, so as to allow us to see the result
more detail.

In Fig. 8 we display the dwell time vs the number
collisions, N, to see if there is a simple relation betwe
them. The input velocity appears here only as a hidden v
able. For example, when the range of velocities in the inse
in the irregular region, there is a wide spread in the locat
of the resulting points. If we also allow initial velocities from
the semiregular region, as happens in the main figure,
the data points are localized around a specific zone tha
darker in the figure. This is consistent with an essential
dependence of these variables when the initial velocities
outside of the irregular region. The number of collision da
points in the main figure and in the inset are equal.

Next we discuss the relevant scattering variables of
problem. In Fig. 9 we show the irregular behavior of the e
angle as a function of the normalized initial particle veloci
The low energy particles, with velocities less than 5.3, ha
an irregular exit angle in a wider range of values. When
plot the distribution of these exit angles, we find a wi
pattern centered around an angle of about 0.45 rad. This
be seen in the inset of Fig. 9. Particles with incident velo
ties larger than 5.3, that show semiregular behavior, a
contribute strongly to this peak. The corresponding his
grams for these regions are displayed in Fig. 10, with the
histogram associated with the irregular region, and the r
one with the semiregular region. Both histograms show
peak for an exit angle around 0.45 rad. For low energy in
dent particles we obtain a wider range of output angles.

In Fig. 11 we show the exit velocity as a function of inp
velocity. The region with input velocity less than 5.3 is qu
irregular, and it is consistent with the previous figures. Wh
we increase the input velocity, the exit velocity grows a

FIG. 9. Exit angleaout as a function ofv in /Vmax. The low
velocity region again displays an irregular behavior for the e
angle. The inset in the figure for the preferred exit angle has a p
around 0.45 rad.
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the fluctuations are around a line with a slope of almost 4
In this figure it is noticeable that there are large jumps
input velocities between 16.7 and 19. The left inset is
amplification for low input velocities. The right inset show
the corresponding histogram for the exit velocities. Here
notice that there are isolated peaks or gaps in this distr
tion.

The histograms shown in Fig. 12 are directly related
the data shown in Fig. 11. The left histogram correspond
the data given in the inset of Fig. 11, while the right o
corresponds to the main plot. In both analyzed histogra
the fluctuations are around the line with slopep/4, with data
points on this line labeled by the variablev. The variables

t
ak

FIG. 10. Histograms of the dataN(aout) shown in the inset of
Fig. 9 that separate irregular and semiregular regions. Both h
grams have a peak close toaout50.45 rad. The irregular region
histogram is shown in~a!. It covers a wider range of output veloc
ties than the semiregular region shown in histogram~b!. The bin
sizes taken for the histograms are 3% of the full range inaout .

FIG. 11. In the main figure we show the exit velocity vs inp
velocity for 6000 particles for a wide range of initial velocitie
Inset~a! has the same coordinates, but for 2000 input velocities
inset~a! the irregular region is more detailed, and between 0 and
the coarse averaged slope is small, while outside this range
averaged slope is close top/4. We use the latter result in the his
togram of Fig. 12. The exit velocity histogram is shown in inset~b!.
Notice the isolated peaks in the distribution.
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Vmax and vout are the maximum disk velocity and the re
output velocity of the particles, respectively. One importa
feature of these histograms is that they appear to be dire
related to the isolated peaks mentioned before. Here the
fect is more prominent for the irregular region of input v
locities. The effect remains, even if we make the veloc
equal, but with different initial phases. This is equivalent
carrying out a phase average in the interval (0,2p). The gaps
in the output velocities are also gaps in output energy. Th
results indicate that there are output energy regions tha
particle cannot explore, leading toforbiddenenergy regions.
In the inset at the top of Fig. 11, we note that the exit v
locities have a peak when the input velocities are close to
For the range of velocities between 23 and 60, the ene
gaps were not seen. This is why the gaps are wider at
bottom in the inset of Fig. 11. If we increase the range
input velocities, as in the main figure, then there appear
row gaps related to different velocity contributions.

We have also carried out a basic fractal analysis o
10 000-particle system. The idea was to extend the ana
of Ref. @5# to two dimensions. We determined the pla
boundary of initial conditions (x0̄ ,a0), which separates the
particles into the ones that go upwards from the ones tha
downwards. We plotted a figure with black squares rep
senting the initial conditions of particles which exit upward
and empty squares belonging to the ones that go downwa
We obtained 1.86 as the fractal dimension. We do not sh
these results since they are typical of chaotic scattering p
lems. We carried out this quantitative analysis to make s
that all the qualitative generic properties of a chaotic scat
ing system applied. Although all the results are quantitativ
different, as one should expect, we did not find a signific
change in the general qualitative behavior described abo

Finally, we note that the model we are considering h
does not conserve energy, and we are also interested in
derstanding how energy is added or subtracted from the
to the colliding particles. One possibility is to take the initi
velocities distributed by a Gaussian function, just as in

FIG. 12. Histogram of theN(vout2v)/Vmax data. ~a! corre-
sponds to the data given in inset of Fig. 11~a!, and ~b! to the data
shown in the main plot. The fluctuations are analyzed around
line with slopep/4, and are labeled by the variablev. Herevout is
the real output velocity of the particles. We surmise that some
the isolated peaks present may be connected with the exit en
gap regions.
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classical statistical mechanics Maxwell velocity distributio
We then chose a beam of particles with this velocity dis
bution with a given standard deviations, or inverse tempera-
ture. Then we studied the evolution of the distribution of e
velocities. We did the analysis at low, intermediate, and h
beam energies. The results are shown in Fig. 13. In al
these figures, the continuous line curve represents the Ga
ian distribution fit to the beam of incident particle velocitie
The histogram is the distribution of exit velocities after sc
tering. We note that the Gaussian distribution is maintain
only for high energies~right-bottom figure!, but for low or
medium energies the exit velocities cannot be fitted to
simple Gaussian. At low energies, when the incident velo
ties are in the irregular region~left-top figure!, however,
most particles concentrate about a Gaussian-like distribut
with smaller mean ands. These latter results indicate tha
the beam loses energy, and that it has some kind of stoc
tic cooling.

V. CONCLUSIONS

In the present paper we considered the complex dynam
of a particle that scatters from two periodically oscillatin
disks with a variety of initial conditions. We found that th
dynamics has regular and irregular behavior that we analy
in some detail. This model is in a sense adynamical exten-
sionof the well known Lorentz gas@29#. Although the model
studied here is perhaps the first dynamic chaotic scatte
analysis, several of the results we described are simila
those found in chaotic static scatterers. There are, howe
some important unexpected differences in the results
tained. Among the most interesting and surprising res
presented in this paper are the energy gaps found in the
energy. This result indicates that there is an important ene

e

f
gy

FIG. 13. Each of the four figures was produced from a beam
particles with a Gaussian initial velocity distribution, denoted by
continuous line in the figures. The histograms ofN(v in) or N(vout)
were produced from the exit velocities after scattering the oscil
ing disks. Each figure has a different mean and standard devia
In ~d! we see that the Gaussian distribution is preserved but only
high energies. In the irregular exit velocity region~a!, the exit dis-
tribution is concentrated about a Gaussian-like distribution w
smaller mean ands. This result can be interpreted as some kind
stochastic cooling.~b! and ~c! correspond to intermediate energ
regimes where the exit distribution is not Gaussian.
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absorbing mechanism, directly related to the nature of
classical dynamics of the problem. We found that the ma
edly irregular dynamics appears when the particles have
locities on the order of the disk velocities. It is within th
energy range that the energy gaps appear. For a larger
ticle energy the dynamics simplifies, for the oscillating dis
appear as if they were at rest.

Another important difference from the dynamics of ch
otic static scatterers has to do with the energy gained or
by the beam of particles. As a test, we took a Maxwell-li
distribution of initial velocities, and found that only in th
large energy regime, where the disk is essentially seen at
by the particles, the Gaussian distribution of exit velocities
preserved. Otherwise, there are important changes in the
velocity distributions for low velocities.

In this paper we considered that the disks do not abs
energy from the colliding particles. Including energy gain
or lost by the disks is necessary in order to mimic the eff
of temperature in the model. We intend to include this eff
in the model elsewhere. The very interesting questions ra
by the quantum mechanical treatment of the model in
duced here are left for the future.
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APPENDIX

In this appendix we write down the explicit expressio
for the parameters defined in the main body of the text.
order to obtain the values of the parametersÃ, B̃, andC̃ of
Sec. II, we use Fig. 2, and ask that the parabolic curve c
through the points@(m/2) T,Xe1A# and @@m11)/2# T,Xe
e
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ar-
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st
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s
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2A], whereXe is the equilibrium position of the center o
the disk, andA is the oscillation amplitude. When this i
done, we obtain the following expressions:

Ã5free parameter ,

B̃5~21!m
2A

p
1S Ã

v
D @2F02p~112m!#, ~A1!

C̃5Xe1~21!m11A~112m!1~21!m
2AF0

p

1S Ã

v2D @F0
21mp2~11m!2pF0~112m!#.

Ã is the curvature in the saw tooth, which is associated w
the disk acceleration.

The derivation of the parametersa0, a1, a2, a3 and a4
appearing in Eq.~7! is a straightforward, and here we ju
cite the results. We evaluate Eq.~1! at t5tn11 and then
substitute the result into Eq.~6!. Then we obtain Eq.~7! with
the following coefficients:

a05xn
21vn

2tn
21C̃222xnvnxtn12xnC̃22vnxC̃tn1yn

2

22ynvnytn21,

a1522vnx
2 tn12B̃C̃12xnvnx12xnB̃22vnxB̃tn12vnxC̃

22vny
2 tn12ynvny ,

a25vn
21B̃212ÃC̃12xnÃ22vnxÃtn12vnxB̃, ~A2!

a352ÃB̃12vnxÃ,

a45Ã2.
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La Recherche20, 419 ~1989!.

@5# D. W. Noid, S. Gray, and S. A. Rice, J. Chem. Phys.84, 2649
~1986!.

@6# B. Eckhard and C. Jung, J. Phys. A19, L829 ~1986!.
@7# S. Bleher, E. Ott, and C. Grebogi, Phys. Rev. Lett.63, 919

~1989!; S. Bleher, C. Grebogi, and E. Ott, Physica D46, 87
~1990!.

@8# B. Eckhardt, J. Phys. A20, 5971~1987!.
@9# S. Bleher, C. Grebogi, and E. Ott, Physica D46, 87 ~1990!.

@10# H. J. Korsh and A. Wagner, Comput. Phys.5, 497 ~1991!.
@11# J. V. Jose´, C. Rojas, and E. Saletan, Am. J. Phys.60, 587

~1992!.
@12# N. Meyeret al., J. Phys. A28, 2529~1995!.
@13# For a review, see, e.g., C. W. J. Beenakker and H. van Hou
Solid State Phys.44, 1 ~1991!.

@14# D. Weisset al., Phys. Rev. Lett.66, 2790 ~1991!; 70, 4118
~1993!.

@15# R. Schusteret al., Phys. Rev. B50, 8090~1994!.
@16# C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkin

and A. C. Gossard, Phys. Rev. Lett.69, 506 ~1992!.
@17# A. M. Chang, H. U. Baranger, L. N. Pfeiffer, and K. W. Wes

Phys. Rev. Lett.73, 2111~1994!.
@18# A. M. Chang, H. U. Baranger, L. N. Pfeiffer, K. W. West, an

L. V. Chang, Phys. Rev. Lett.76, 1695~1996!.
@19# J. A. Folk, S. R. Patel, S. F. Godijn, A. G. Huibers, S. M

Cronenwett, C. M. Marcus, K. Campman, and A. C. Grossa
Phys. Rev. Lett.76, 1699~1996!.

@20# R. P. Tayloret al., Phys. Rev. Lett.78, 1952~1997!.
@21# C. W. J. Beenakker and H. Van Houten, Phys. Rev. Lett.63,

1857 ~1989!.
@22# M. L. Roukes and O. L. Alerhand, Phys. Rev. Lett.65, 1651

~1990!.
@23# E. M. Baskinet al., Pis’ma Zh. Eksp. Teor. Fiz.55, 649~1992!

@JETP Lett.55, 678 ~1992!#.



et

ev

-

ta-

31
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