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We investigate the two-dimensional classical dynamics of the scattering of point particles by two periodi-
cally oscillating disks. The dynamics exhibits regular and chaotic scattering properties, as a function of the
initial conditions and parameter values of the system. The energy is not conserved, since the particles can gain
and lose energy from the collisions with the disks. We find that for incident particles whose velocity is on the
order of the oscillating disk velocity, the energy of the exiting particles displays honmonotonic gaps of allowed
energies, and the distribution of exiting particle velocities shows significant fluctuations in the low energy
regime. We also considered the case when the initial velocity distribution is Gaussian, and found that for high
energies the exit velocity distribution is Gaussian with the same mean and variance. When the initial particle
velocities are in the irregular regime the exit velocity distribution is Gaussian, but with a smaller mean and
variance. The latter result can be understood as an example of stochastic cooling. In the intermediate regime
the exit velocity distribution differs significantly from Gaussian. A comparison of the results presented in this
paper to previous chaotic static scattering problems is also discyS163-651X98)14408-3

PACS numbd(s): 05.45+b, 95.10—-a

[. INTRODUCTION dynamical study of the scattering of particles from a time-
dependent oscillatory interaction potential, which consists of
The study of nonlinear systems capable of exhibiting chatwo circular disks that oscillate periodically in time. The
otic behavior has been an intensive area of research in tratic two-disk problem was recently shown to be analyti-
last 15 years. This research was initiated about a century agﬁ?"y integrablef11], (hereafter we call this work)l In this
by the work of Henri Poincatewho studied the motion of aper we build our n_oneq_umbrlum dynamical study based
three gravitationally interacting bodies. Most of the work UPON the results obtained in I. .
done on this subject has focused on bounded systems. On the U model can conceivably be produced in very low tem-

other hand, many experimental techniques involve scatterin§€rature experiments, where a pair of circular quantum dots
processes. In contrast to bounded systems, where the pa _generated by a gate voltage that can vary their radius pe-

cle’s trajectories remain forever inside the range of interac-”Od_ically in time. Balligtic transport .exlperime.nts in Mesos-
tion, in a scattering process an incoming particle “feels” the COPIC Systems have raised the p9§5|blllty of dwectly studying
interaction potential only for a finite amount of time and chaotic billiards, where the addition of external fields can
eventually exits the interaction regidh—11. In the general yield results that are expected to account for certain aspects

description of a scattering process, we have an input traje@f Unusual related experimental reslt3-20. Some of the

tory into a region of nontrivial dynamics called the sca\tteringtrl"’ms,porlt relsultds seeln In .expfrlrznen_lt_s;] are surmlsedf to_ have
region, and an output trajectory away from this region. weclassical related exp anat|_0[12 N _q' e geometry of mi-
ojunctions[13] and antidot-latticed14,15 can be de-

can think of the scattering process as a map that transfornfg ived b dels th it of circul ing disk
an incoming trajectory into an outgoing one. Only relativelyScrl i 3{) models that C.OHSh'.St or circular sFl:Ia]'Eterlng IS hS.
recently has it been realized that a scattering processes frolp! (€ above reasons, in this paper we will focus on the

a general scattering potential, often without a simple geomet§cattering of a particle from two oscillating classical hard-

ric symmetry, can have rather complicated dependencies bngk billiards. Here we concentrate on the (_:Iassical dynamics
tween the incoming and outgoing trajectories. This mean§' this model, and leave the very interesting quantum case
that, by very slightly changing the initial conditions that de- ora future_ study. . .

fine the incoming trajectory, the outgoing trajectory will . The outline of the paper 1S the foII_owmg: In Sec. I, we
have rather large fluctuations. The idea tblahotic scatter- !erdl.Jce the.model con§|dered in this paper, 'together with
ing can play an important role in various problems in physics!ts main physical properties. In Sec. lll, we derive a scatter-

became widely accepted after the seminal work of Petit and'9 map associated with our problem. 'U Sec. .IV’ we present
Henon [4] (see also Ref[1]). and discuss the bulk of our results. Finally, in Sec. V, we

%{ovide a short summary of the results and the perspectives

Most previous chaotic scattering studies have assumed
for the future.

stationary scattering region, i.e., fixed in tirffer an excep-

tion, see Ref[12]). In this paper we present results from a .. DEFINITION OF THE PROBLEM
We consider the motion of a unit mass patrticle restricted
*Permanent address. to moving on the plane. The particle elastically collides with
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______________ FIG. 2. HereX(t) denotes the oscillating wall model about the
equilibrium positionX, in the rangd X.— A, X +A], with ampli-

tude A. The parametem labels the oscillation segment with fixed
FIG. 1. This figure defines the two-disk periodically oscillating Value in the time interval(m/2) T, [(m+1)/2] T). The relation be-
model studied in this paper. The model is replaced and studied bjveen timet andm is given in Eq.(2). The figure is drawn for
the one oscillating disk and a fixed wall. The figure shows a dottedPo=0.
line disk with a center aX,=X(t,), and a continuous line circle at
the right of the wall with center &, ;=X(t,.,). The disk onthe  Here the constant8, B, andC are fixed for a half period,
left of the wall represents the image of the dotted line disk. Vari-and they have different values for different half periods. The
ables with a subinder are evaluated at time, . motion of the disk centefthe other disk is the mirror image
) ) o o ~ of this ong is given by Eq.(1), the modulus the oscillation
two hard disks that oscillate periodically in time. The initial gk periodT.
velocity of the particle changes as a function of time due to |y our analysis, for calculational convenience, we chose to
the energy exchange after gach coIIisiqn_ yvith the_disks. Asreat the problem in the following way. We label by the
we discuss below, depending on the initial conditions thentegerm each continuous piece of the disk oscillation. The
particle will spend a certain amount afivell timein the  {imet andm are then related by the expression
interaction region, after which time it will exit upwards or

downwards. It is the complexity of this motion that we will [ 20t+ Do/ w)
m=||l————

| @

carefully describe below.
Here we will follow the approach presented in11],

including its notation. The reader should check this referencsvhere[[ 1] denotes the nearest lower integer. Thearam-
for further details on the formulation of the static problem. In ger. me

Fig. 1, we show the two disks on the plane. The radii of botheter will have a fixed value for timé in the time interval

disks are normalized to 1. Their centers are separated by @V T<t<[(m+1)/2]T. Herew=27/T is the oscillation
time-dependent distancg(t)>2. One convenient way to frequency, andb, is the initial oscnlatlon~prlase. TDe Spe-
study this problem, as pointed out in |, is by replacing theCific expressions that define the parameters3, andC are
system by one disk and one rigid wall placed at the symmegiven in the Appendix.

try axis of the two-disk problem. This is the representation of We have now defined the time dependence of the oscil-
the model we study in this paper. lating disk. Next we use the relevant results given in I, noting

that the incidence-reflect symmetry in our case is changed by
the oscillation of the disk.

Two-disk oscillating model
The model we consider here is in some sense the scatter- 1. Collision Time

ing two-dimensional extension of the well studiesund We start by calculating the time elapsed between two suc-
Fermi acceleratiormodel[ 27,28, This model is defined by cessive collisions of the particle with the disk. We need this

a free particle inside a rigid one-dimensional box, with onetime to calculate the new velocity vector. by means of a
wall fixed and the other one periodically oscillating in time. y » DY

The Fermi model was one of the first two degrees of freedorr¥6|0(:i'[y transformation _to the system V\{here the diSk.isf at
problems studied, which exhibited a transition from regula est. We deduce from Fig. 1 that the position of the colliding

to chaotic behavior as a function of the oscillating wall mo_partlcle is given by

tion. For a linear saw-tooth time-dependent wall oscillation, - - - -

the particle dynamics is regular. Having a linear time depen- P(th+1) =pn+1= pnytun, (1= 1y), ©)
dence implies a constant oscillating wall velocity. When the ) . o )
oscillation is nonlinear in time, there is acceleration in theWheret, is the previous collision time, and the subindex

wall motion, and one can then have nontrivial dynamicsdenotes aspecular variable To clarify the meaning of
with a transition between regular to fully chaotic behavior. InSPecular consider for example, the one associated with
this paper, without loss of generality, we consider the sim-p,(t)=(X,,yn), which gives

plest nonlinear piecewise quadratic time-dependent disk os-

cillation shown in Fig.(2). In this case we represent the f;m}:(xnu Vo) =(—Xn,Yn)=(—Xp+cos 6,,sin 6,),
motion of the disk center by 4)

X(t)=At?+Bt+C. (1)  and the velocity
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wall Then
7n+1 q’j 1{l>n+1 R R R
(N Uny/\T 1= Pk, (13
N B where
Un
5 P:[(Xn+1_Xn+1)uny_yn+1unx]: (14
(-.X nlp) (Xn+1!0) and
virtual disk
Unx=Unxt Vi1, Uny=Uny (15

o _ o ~ with the normal unit vectok||z, as seen in the figure. One
FIG. 3. This figure is used in the derivation of the velocities cgn also show that
map. The relative velocities before and after the collision have the
same angle with respect to the normal to the disk, but the velocity [ A} =lu —u X1 —X Kk
itself has two different angles. See text for the definition of the n+1/\ 1 =[Un s adne n+1y( ntl n+1)] (16)
variables in this figure.

From these two equations, we obtain

Unv:(van!Unuy):(_UnX1Uny)

) un+1y:E_Qun+lx1 (17)
=[vncoq 0n— Pp),vpSIN(Or— dp)]. 5 .
with
The new collision poinp,,; 1= (Xn+1,Yn+ 1), at the new col- P
lision timety, ., ,, must lie on the circumference given by the P=———— and Q= L_ (18
equation Xn+1~ Xn+1 Xn+1~ Xn+1
[Xn+1—x(tn+1)]2+y§+1:1- (6) We also have the conservation of the velocity magnitude,

which in the coordinate frame where the disk is at rest is
Evaluating Eq.(1) att=t,, 4, and substituting it in Eq(6), given by
we obtain the quartic equation fog, ;,
4 3 2 ( ) u§+lx+uﬁ+ly:uﬁ' (19)
b, tasty tast ., +at, 1+a9,=0, 7
et n nrL T Using Eq.(15) in the last equation we obtain

where the expression for the parametagsa;, a,, a; and

a,, are explicitly given in Eq(A2). PQ- \/EZQZ—(1+Q2)(52—uﬁ)
We can obtairt,,, ; as a function ot,, using Eq.(7) and Un+1x= 1+Q2 ' (20
Eqg. (A2). Once we knowt,, . 1, the collision point on the disk
can be determined from E¢B) as with an appropriately chosen minus sign in the square root.

X 1= — XDt 1) vt ot t) We now go back to Eq15) to find up, 1, . This allows us to
n+l n”Undlne1 ™) Yne1=Yn T Unytn 17 ’(8) obtain the velocity of the particle after the collision through
the expressions

and then, using Eq6), the disk will be located at
Xns1=Xne1H V1= Yhis 9

2. Disk velocity map

Un+1x=Un+1xt Vo1 and Unt+1y= Un+1y- (22)

Ill. SCATTERING MAP

Following the notation of I, we can obtain the scattering
To calculate the velocity of the disk/,., at the new map associated with this dynamical system. Since the deri-
collision time, we take the time derivative of E¢l) that  vation of our map is completely analogous to the one given
gives there, we can directly write down the final expressions stat-
R _ o ing a few differences proper to our problem. The map de-
V(t)=(X(t),00=(2At+B,0), (10 rived in | is
and consequently 4l vn —
bny1=sin U_l[sm dntRsiN(O,—dy)]|, (22
> > ~ ~ n+
Vnr1=V(th1) = (2Ath1+B,0),=(V541,00  (11)

— i _ 1 . + . _ )
which is fully determined sincg, . ; is known from Eq.(7). On+1=SiN LN Op+ X SIN( 0= )] @3

To determine the velocity of the particlémﬂ, we introduce |n our caseR= Xp+ X4 1, and
the relative particle velocitysee Fig. 3 with respect to the

disk as A=R coq 6,,— ¢,,) —coS ¢,

u=v—V. (12) —\[cosd,—R cod 6,— ¢,) >~ R2+ 2R cosb,. (24)
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FIG. 4. Phase space results for a limit close to the Fermi acceleration one-dimensional model. isl¢ihe x component of the particle
velocity, normalized by the disk velocity ... The particle will eventually sense the disk two-dimensional curvature, and the resonance
structures, as compared to the Fermi model, will change. The plot has 74 238 points obtained from 17 particles with different initial
velocities.

The initial conditions @, ¢¢) in this map are obtained from IV. RESULTS
the parameters set at time 0. If we take the initial particle
position as Xg,Yo), the anglea between the initial velocity

vy and the horizontal gives

In this section we discuss the bulk of our numerical re-
sults. We provide typical results for a regime of interesting
physical parameters. To check our analysis, we looked at the
Fermi acceleration limit of our problem, which corresponds
to having the two disks quite close to each other and with the
particle initial conditions along the disks axis, so that the
particle does not “notice” the disks curvature. We repro-
6p=sin L(yo+ \osin ). (26)  duced the Fermi accelerator model results by choosing the
parameters for the equilibrium position of the disk center,
Xe, the amplitude of oscillatiorA, the time oscillation pe-
riod T, and the free space distance between the wall and the
disk, close to the values given in Ref27,28. The phase
space plots obtained correspond well to the known Fermi
accelerator results, i.e., chaotic behavior for low velocities,
and several sets of resonant islands for higher velocities.

After this test we chose a separation between the wall and
disk large enough so that the particle dynamics sensed the
curvature of the disks. Of course, if the separation distance is
where too large, the particle will hardly collide with the disk and

the dynamics becomes trivial. The interesting parameter
5 R and S— Yo 29 ranges are the ones which allow a large number of particle
Xo—Xo Xo—Xo' collisions with the oscillating disk and the wall. A typical
phase space plot is shown in Fig. 4, for several particle initial
R=(Xo— Xo)Ugy+ YoUgxUox=va— Vo and Ug,=vg, . cond?t?ons. The parameters considered ;atisfy the_ necessary
(30)  condition to have a large number of particle collisions with
the oscillating disk. In the units where the radius of the disk

The results derived in this section used a polar coordinate$ 1, we took the parametersX{,0)=(1.000097,0),A
representation that has several advantages for the geometficl-6X 10:6’ T=7.6X10"° ®,=0, and the acceleration
analysis described here. When iterating the map numericallygarameterA=4716.085. We considered a set of 2000 par-
however, the polar coordinate representation is somewhdicle initial conditions, which we may as well call a beam of
cumbersome, and for that reason we found it more conve2000 particles, each one sent from the origin into the scat-
nient to carry out the iterations in Cartesian coordinates. Thigering region with an angle=6x 102 radians with respect

is what we did to obtain the results described in Sec. IV. to the x axis. We varied the velocities of the particles be-

bo=sin1 Z_Z[(xo—xa)sin a+ygcosal|, (25

In Eq. (25), vy is given byvy= U+ V,, andu by

B¢ =y =y 2
RS- (RIS~ (1+8))(RE-up)

u frd
ox 1+S2

: (27)

Ugy=R—Stpy, (28




1784 A. ANTILLO N, JORGE V. JOéEAND T. H. SELIGMAN PRE 58

1000

200
800

Wy

| | | UWW

100

600

T,/T

2377
400

80 .
7.577 7.581 7.585
200 - 1

. L 0 .
0 15 0 50

1
vin/V max

FIG. 5. Dwell timery as a function of the normalized incident FIG. 7. Here we show the dependence betwdemdv ,/V pax-
velocity vi,. In inset () we show amplified results about;, The main plot and the inset show the same general behavior as that
=2.375. We see that the low energy particles have an irregulaof Fig. 5, with the irregular behavior in the same range of input
behavior with a fractal-like character. Velocities higher than 5.5velocities. For large velocitied) is basically constant. This means
have a mixture of regular and irregular behaviors. In irbetwe that the disk motion has little effect on the particle velocities. Each
show a further amplification around velocities close to 7.581. Eaclpicture was done with 2000 particles.
picture is drawn from results of 2000 initial conditions.

would expect for large energies since the particle essentially
tween 0.1 and 5.0, chosen from a uniform random distribusees the disk as stationary.
tion. It is interesting to use the data of Fig. 5 to construct the
In Fig. 5 we show the delay, odwell time 74, as @ hjistogram of dwell times shown in Fig. 6. The main histo-
function of the initial energy(velocity) of the incident par-  gram has two representative contributions. One comes from
ticles. For low energies we observe aVery irregular behaVithe irregu|ar zone and the Other one from the Semiregu'ar
in 74. In fact, this behavior is rather close to a fractal, as cartomponent, as shown in the two insets in the figure. The
be seen by zooming in a given interval of energies, as showgipper inset corresponds to the irregular region, and the lower
in the left inset. We also note that for initial velocities Iarger one to the Semiregu]ar zone. The main histogram shows one
that 5.5, there is a mixture of regular and irregular zonespeak close to ary of about 100 and the other one close to
When we amplify one of the irregular regions, we can agaimo, which correspond to the peaks seen in the insets. The
see the fractal character of the resulige the inset on the pin size used in all the histograms shown are around 3% of
right). For larger energies than the ones shown here, Wehe full range. In Fig. 7 we show the number of collisions
found thatry tends to a constant value. This is what we yjth the disk versus the incoming velocity. The general be-

1500 ¢
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Z L e ®
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N
FIG. 6. Dwell time histogranN(74/T) for data like the one FIG. 8. Here we show a plot af; vs N. We note that there is no

shown in Fig. 5, except that here we used 6000 particles instead afear relationship between these two variables. The general behav-
the 2000 used in Fig. 5. The two noticeable peaks are due to thier of both plots are similar to the ones shown in Figs. 5 and 7. Note
contributions from the irregular and semiregular zones, which corthat for lowv, (irregular region, their dependence is irregular. The
respond to the data shown in insé& and (b), respectively. The number of points taken was 2000. We see that when the input
number of particles used to obtain the histograms was 2000. Theelocity is outside the irregular region, all the particles are concen-
bin size in the three histograms is around 3% of the full range irtrated in a black zone in the figure. This means the near indepen-
each plot. dence ofry andN with respect to the input velocity.
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FIG. 9. Exit angleay, as a function ofv,/Vyay. The low ) ) )
velocity region again displays an irregular behavior for the exit  FIG- 10. Histograms of the datd(«,,) shown in the inset of

angle. The inset in the figure for the preferred exit angle has a peak!d- 9 that separate irregular and semiregular regions. Both histo-
around 0.45 rad. grams have a peak close ta,=0.45 rad. The irregular region

histogram is shown ifa). It covers a wider range of output veloci-

havior is very similar to that in Fig. 5, however, the explicit ties than the semiregular region shown in histogridmn The bin
relationship is complicated. This can also be seen from FigSiZes taken for the histograms are 3% of the full rangejq.

8, which we shall discuss in the next paragraph. In Fig. 7 we

note, in particular, the irregular behavior in the same regionshe fluctuations are around a line with a slope of almost 45°.
of incident velocities. As we increase the initial energy, theln this figure it is noticeable that there are large jumps for
number of collisions reach a plateau, which is because thiput velocities between 16.7 and 19. The left inset is an
disk appears to be at rest. In the inset we used the san@mplification for low input velocities. The right inset shows
number of particles as used in the main figure, but the rangthe corresponding histogram for the exit velocities. Here we
of velocities is smaller, so as to allow us to see the results imotice that there are isolated peaks or gaps in this distribu-
more detail. tion.

In Fig. 8 we display the dwell time vs the number of  The histograms shown in Fig. 12 are directly related to
collisions, N, to see if there is a simple relation betweenthe data shown in Fig. 11. The left histogram corresponds to
them. The input velocity appears here only as a hidden varithe data given in the inset of Fig. 11, while the right one
able. For example, when the range of velocities in the inset isorresponds to the main plot. In both analyzed histograms
in the irregular region, there is a wide spread in the locatiorthe fluctuations are around the line with slopét, with data
of the resulting points. If we also allow initial velocities from points on this line labeled by the varialte The variables
the semiregular region, as happens in the main figure, then
the data points are localized around a specific zone that is
darker in the figure. This is consistent with an essential in-
dependence of these variables when the initial velocities are
outside of the irregular region. The number of collision data
points in the main figure and in the inset are equal.

Next we discuss the relevant scattering variables of the
problem. In Fig. 9 we show the irregular behavior of the exit
angle as a function of the normalized initial particle velocity. Zéwo -
The low energy particles, with velocities less than 5.3, have 600 &
an irregular exit angle in a wider range of values. When we
plot the distribution of these exit angles, we find a wide 50 | a00 | b
pattern centered around an angle of about 0.45 rad. This can
be seen in the inset of Fig. 9. Particles with incident veloci- 1l
ties larger than 5.3, that show semiregular behavior, also % s 10
contribute strongly to this peak. The corresponding histo- % 50 100 150 200
grams for these regions are displayed in Fig. 10, with the left Via/ Vinas
histogram associated with the irregular region, and the right 5 11 |1 the main figure we show the exit velocity vs input

one with the semiregular region. Both histograms show &eacity for 6000 particles for a wide range of initial velocities.

peak for an exit angle around 0.45 rad. For low energy inCiyset(a) has the same coordinates, but for 2000 input velocities. In

dent particles we obtain a wider range of output angles. inset(a) the irregular region is more detailed, and between 0 and 15
In Fig. 11 we show the exit velocity as a function of input the coarse averaged slope is small, while outside this range the

velocity. The region with input velocity less than 5.3 is quite averaged slope is close t@/4. We use the latter result in the his-

irregular, and it is consistent with the previous figures. Whenogram of Fig. 12. The exit velocity histogram is shown in ingt

we increase the input velocity, the exit velocity grows andNotice the isolated peaks in the distribution.
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FIG. 12. Histogram of theN(vq—v)/Vmax data. (a) corre- FIG. 13. Each of the four figures was produced from a beam of

sponds to the data given in inset of Fig.(41 and(b) to the data  particles with a Gaussian initial velocity distribution, denoted by a
shown in the main plot. The fluctuations are analyzed around theontinuous line in the figures. The histograma\gb;,) or N(v oy
line with slopew/4, and are labeled by the variahle Herev o is were produced from the exit velocities after scattering the oscillat-
the real output velocity of the particles. We surmise that some ofng disks. Each figure has a different mean and standard deviation.
the isolated peaks present may be connected with the exit enerdg (d) we see that the Gaussian distribution is preserved but only for
gap regions. high energies. In the irregular exit velocity regita, the exit dis-
tribution is concentrated about a Gaussian-like distribution with
Vinax @and v, are the maximum disk velocity and the real smaller mean and-. This result can be interpreted as some kind of
output velocity of the particles, respectively. One importantstochastic cooling(b) and (c) correspond to intermediate energy
feature of these histograms is that they appear to be directiyegimes where the exit distribution is not Gaussian.
related to the isolated peaks mentioned before. Here the ef-
fect is more prominent for the irregular region of input ve- classical statistical mechanics Maxwell velocity distribution.
locities. The effect remains, even if we make the velocityWe then chose a beam of particles with this velocity distri-
equal, but with different initial phases. This is equivalent tobution with a given standard deviatian or inverse tempera-
carrying out a phase average in the interval {),2The gaps ture. Then we studied the evolution of the distribution of exit
in the output velocities are also gaps in output energy. Theseelocities. We did the analysis at low, intermediate, and high
results indicate that there are output energy regions that theeam energies. The results are shown in Fig. 13. In all of
particle cannot explore, leading forbiddenenergy regions. these figures, the continuous line curve represents the Gauss-
In the inset at the top of Fig. 11, we note that the exit ve-ian distribution fit to the beam of incident particle velocities.
locities have a peak when the input velocities are close to 19The histogram is the distribution of exit velocities after scat-
For the range of velocities between 23 and 60, the energtering. We note that the Gaussian distribution is maintained
gaps were not seen. This is why the gaps are wider at thenly for high energieqright-bottom figure, but for low or
bottom in the inset of Fig. 11. If we increase the range ofmedium energies the exit velocities cannot be fitted to a
input velocities, as in the main figure, then there appear nasimple Gaussian. At low energies, when the incident veloci-
row gaps related to different velocity contributions. ties are in the irregular regiofleft-top figure, however,
We have also carried out a basic fractal analysis of anost particles concentrate about a Gaussian-like distribution,
10 000-particle system. The idea was to extend the analysigith smaller mean and-. These latter results indicate that
of Ref. [5] to two dimensions. We determined the planethe beam loses energy, and that it has some kind of stochas-
boundary of initial conditionsXy,ay), which separates the tic cooling.
particles into the ones that go upwards from the ones that go
downwards. We plotted a figure with black squares repre-
senting the initial conditions of particles which exit upwards,
and empty squares belonging to the ones that go downwards. In the present paper we considered the complex dynamics
We obtained 1.86 as the fractal dimension. We do not showf a particle that scatters from two periodically oscillating
these results since they are typical of chaotic scattering proldisks with a variety of initial conditions. We found that the
lems. We carried out this quantitative analysis to make surelynamics has regular and irregular behavior that we analyzed
that all the qualitative generic properties of a chaotic scatterin some detail. This model is in a senselynamical exten-
ing system applied. Although all the results are quantitativelysionof the well known Lorentz gaj9]. Although the model
different, as one should expect, we did not find a significanstudied here is perhaps the first dynamic chaotic scattering
change in the general qualitative behavior described aboveanalysis, several of the results we described are similar to
Finally, we note that the model we are considering herghose found in chaotic static scatterers. There are, however,
does not conserve energy, and we are also interested in useme important unexpected differences in the results ob-
derstanding how energy is added or subtracted from the distained. Among the most interesting and surprising results
to the colliding particles. One possibility is to take the initial presented in this paper are the energy gaps found in the exit
velocities distributed by a Gaussian function, just as in theenergy. This result indicates that there is an important energy

V. CONCLUSIONS
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absorbing mechanism, directly related to the nature of the- A], where X, is the equilibrium position of the center of
classical dynamics of the problem. We found that the markthe disk, andA is the oscillation amplitude. When this is
edly irregular dynamics appears when the particles have vedone, we obtain the following expressions:
locities on the order of the disk velocities. It is within this
energy range that the energy gaps appear. For a larger par-
ticle energy the dynamics simplifies, for the oscillating disks
appear as if they were at rest. - m2A
Another important difference from the dynamics of cha- B=(-1) 7+
otic static scatterers has to do with the energy gained or lost
by the beam of particles. As a test, we took a Maxwell-like
distribution of initial velocities, and found that only in the
large energy regime, where the disk is essentially seen at rest
by the particles, the Gaussian distribution of exit velocities is
preserved. Otherwise, there are important changes in the exit +
velocity distributions for low velocities.
In this paper we considered that the disks do not absorfi is the curvature in the saw tooth, which is associated with
energy from the colliding particles. Including energy gainedine disk acceleration.
or lost by the disks is necessary in order to mimic the effect Tne derivation of the parametess, a;, a,, a; anda,
of temperature in the model. We intend to include this effectyppearing in Eq(7) is a straightforward, and here we just
in the model elsewhere. The very interesting questions raisegte the results. We evaluate E(l) at t=t,., and then

by the quantum mechanical treatment of the model introgypstitute the result into E¢6). Then we obtain Eq(7) with
duced here are left for the future. the following coefficients:

A=free parameter ,

A
[2D,— 7(1+2m)],

w

(A1)

- 2AD
C=Xet(~ )™ AL+ 2m) + (- 1"

- [®3+ma?(1+m)— 7dy(1+2m)].
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APPENDIX

In this appendix we write down the explicit expressions

- 2Uﬁytn_F 2y nys

a,=02+B2%+2AC+ 2X,A— 20, Aty + 20,8,  (A2)

for the parameters defined in the main body of the text. In

order to obtain the values of the paramet&rsB, andC of

az=2AB+2v,,A,

Sec. Il, we use Fig. 2, and ask that the parabolic curve cross

through the pointd (m/2) T,X.+A] and [[m+1)/2]T, X,

a.4:~A‘2.
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